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The synthesis and screening of  small molecule combinatorial libraries has become an important new 

technology for  drug discovery. I A convenient format for the generation of these libraries is the synthesis of  

organic compounds on e solid phase. Solid phase synthesis is especially useful for many synthetic 

transformations, since excess reagents can be used to drive the reactions to completion and the excess 

reagents and soluble byproducts ere easily removed. 2 

There are no reports describing the solid-phase synthesis of  benzoxazoles, although targets containing 

the benzoxazole moiety, either isolated from natural products or accessed by total synthesis, have remarkable 

biological activities. 3 For example, gram-positive antibactadals, 4 polycyclic antibiotics, 5 antiparasitics, e 

antiinflemmatodes, 7 elastase inhibitors, 8 and H2-antagonists, e all contain the benzoxazole fragment. These 

examples highlight the level of  interest in new synthetic approaches to benzoxazole derivatives and prompted 

us to explore this phermacophoric scaffold in a combinatorial format via solid-phase synthesis. 

A representative synthesis of  benzoxazole derivative 4 in solid phase is outlined in Scheme 1.1° 

Treatment of  Wang resin with 1,1"-cerbonytdiimidazole (CDI) in tetrahydrofuran furnished the corresponding 

imidazolide resin, 1~ which was allowed to react with diamines to generate the aminofunctionalized resin with 

an acid-labile carbamate linker. Acylation of the resulting resin with dicaboxylic anhydrides in pyddine/CH2CI 2 at 

rt gave carboxylfunctionalized resin 1. The reaction progress could be readily monitored by the Kaiser test, 12 

wherein the beads should be colorless for the complete reaction. Utilizing well-developed PyBOP coupling 

chemistry, ~s either 2-aminophenol or aromatic ring substituted 2-aminophenol were coupled onto resin 1 to 

provide nmin 2. After cleavage of  the carbamata linker with a mixture of TFA/CH2CI 2, the 2-amidophenol was 

released from resin 2 in high yield (see Table 1). Importantly, there was no amino ester formation, since 2- 

amidopbenol was the only product observed under the PyBOP coupling condition. This was confirmed by HPLC 

analysis, in which only a single peak appeared, and analysis of  the infrared bands at 1645, 1545, and 1285 

cm "~, as well as NMR characterization supported the assigned structure. No ester bands were observed in the 

1735 cm "z region. 

Thermal cyclization with acid catalysts is commonly employed to synthesize benzoxazoles. 3 For 

example, 2-amidophenole have been treated with PPA or PPE, ~" ~" propionic acid, 14 POCI3, is and SOCI216 at 
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Scheme 1 (a) CDI, THF, rt. (b) Diamine, THF, rt. (c) Dicarboxylic anhydride, DMAP, pyridine/CH=CI 2 (1:1), rt. 
(d) PyBOP, NMM, DEAF, rt. (e) PhsP, DEAD, THF, rt. (f) TFA/CH2CI2, rt. 

Table 1.2-Amidophenols 2 and Benzoxazoles 4 
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el Compounds were cleaved from resin 2 with TFA/CH=CI=. b) Yields are based on mass balance of 
lyophilized product relative to the resin substitution level, c) Purity was determined by HPLC analysis, 

high temperature to give benzoxazolea. It is noted that those conditions are not suitable for solid phase 

synthesis, since the polymer support and the linker normally do not survive under such harsh reaction 

conditions, When we exposed solid phase linked 2-amidophenols to either POCI3 or SOCI= wi th 1 equivalent of 

pyddine in toluene at 80 = C, more then 50% of the 2-amidophenol was cleaved from solid support in 30 rain. 
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Our attention turned to use of triphenylphosphine (TPP) and diethyl azodicarboxylate (DEAD), since the cyclo 

dehydrative reaction would now proceed under mild, neutral conditions. 17 

The intramolecular dehydrstive cyclization of the 2-amidophenol attached to a solid support (resin 2) 

employing excess of TPP and DEAD in THF proceeded smoothly at room temperature to provide resin 3. The 

resin was then treated with TFA/CHzCI z, dried and lyophilized to yield the desired benzoxazole 4. Overall 

conversion and purity of compounds 4 obtained upon cleavage of the heterocycles from the resin are listed in 

Table 1. In general, the reaction of resins 2 under Mitsunobu conditions gave benzoxazoles in high yield 

(:>90%) and in high purity (>80%).  With electron-withdrawing groups on the aromatic ring (entry 4g) the yield 

and the purity of the resulting benzoxazoles were adversely ef fected) e All the compounds in Table 1 were fully 

characterized by HPLC, mass spectroscopy (low or high resolution), IH NMR, and ~3C NMR. 

In summary, we have, for the first time, demonstrated e very convenient methodology for the solid- 

phase synthesis of benzoxazoles vie Mitsunobu reaction conditions. This procedure has been applied to 

synthesis of a combinatorial library with satisfactory results. 
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